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Executive Summary

The objective of the study reported here was to acquire acoustic and flow data for numerical

validation of impedance models that simulate bias flow through perforates. The impedance

model is being developed by researchers at High Technology Corporation. This report
documents normal incidence impedance measurements for a singular circular orifice with mean
flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter
impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident
sound wave travelling in the same direction) with an anechoic termination downstream of the

orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow

boundary conditions. Velocity in the center of the orifice is also obtained. All velocity
measurements are made with a hot wire anemometer and subsequently checked with mass flow

measurements made concurrently. All impedance measurements are made using the Two-
Microphone Method. Although we have left the analysis of the data to the developers of the
impedance models that simulate bias flow through perforate, our initial examination indicates

that our results follow the trends consistent with published theory on impedance of perforates
with a steady bias flow.
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1.0 Introduction

Personnel at High-Technology Corporation in Hampton, VA, are developing computational
aeroacoustic codes to simulate the effects of flow on the impedance of orifices. Flow

through acoustic liners that incorporate perforates have the potential for high acoustic
• ["_

attenuation as well as control of the frequency of attenuation ". Acoustic data and
corresponding flow data to validate these codes do not exist and it is the objective of this
report to provide such data. In order to facilitate the numerical validation, GTRI's high
intensity impedance tube was modified to provide an anechoic termination downstream of
the orifice and provide measurements of velocity profiles upstream of the orifice. In
addition, velocities in the center of the orifice were also obtained. The steady flow was
supplied by a suction device downstream of the orifice which created a negative bias flow
(mean flow travelling in same direction as incident acoustic wave).

2.0 Experimental Approach and Facilities

The behavior of a single circular orifice under the influence of bias flow was studied using a
normal incidence impedance tube that had several unique features: 1) The tube allowed for a
source of air to enter upstream of the orifice [travelling in the same direction as the incident
acoustic wave] as well as an exhaust port downstream of the orifice; 2) it was provided with
an anechoic termination downstream of the orifice; and 3) it had a port that allowed a hot-

wire to be placed in the center of the orifice. The mean mass flow rate in the impedance tube
was measured with a venturi meter. A hot-wire anemometer was used to measure mean flow

profiles upstream of the orifice in the impedance tube. The anechoic termination assured that
the measured impedance was due to the orifice (and surrounding plate) alone.

The orifice under consideration was circular (diameter = 0.1954 in.) and was placed in a 2.5-
inch diameter aluminum plate that was approximately 0.032-inches thick. The orifice plate

was placed between flanges on the impedance tube at the measurement reference plane. The
controlled variables in this experiment were acoustic frequency, amplitude, and bias flow

velocity. Table I shows the test conditions covered in the present study. For each case, the
reflection coefficient, absorption coefficient and acoustic impedance were measured.

1000 110, 120, 130, 145
2000 I lO, 120, 130,145
3000 110, 120, 130, 145
4000 11o, 120, 130, 145
5000 110, 120
6000 I 10, 120, 130, 145

0.00, 0.05, 0.10, 0.15, 0.20
0.00, 0.05, 0.10, 0.15, 0.20

0.00, 0.05, 0.10,0.15, 0.20
0.00, 0.05, 0.10, 0.15, 0.20
0.00, 0.05, 0. I0, 0.15, 0.20
0.00, 0.05, 0. I0, 0.15, 0.20

Table I. Test conditions for single orifice with bias flow.

2.1 Normal Incidence Impedance Tube
The normal incidence acoustic impedance measurements were made using the Two
Microphone Method as originally described by Chung and Blaser 3 Our impedance tube was
a steel tube whose general specifications are detailed in reference 4. The tube's inner
diameter is 1.12 inches• :i_,,,_ I shows the basic impedance tube set-up for the present

experiments.



2.2 Bias Flow Supply
Bias flow was supplied to the impedance tube via a suction device. An air amplifier, similar
to the one described in the 2DOF tests of reference 2, was used to create negative pressure in
a conduit. The conduit was attached to the impedance tube with two 0.375 inch pressure
ports on the tube downstream of the orifice (see figure 1). Air was drawn in from the inlet
ports near the acoustic driver, pushed through the orifice and out the tube to the air amplifier.
A Flow-Dyne venturi flow meter was placed in-line to measure the mass flow rate in the
impedance tube. ! i ::,_ _ _ shows the impedance tube and the path of the bias flow.

2.3 Anechoic Termination

Elimination of acoustic reflection downstream of the orifice was accomplished by placing

sound absorbing material at the impedance tube's termination. An l 1-inch long wedge of

Pyrell foam was followed by a large box filled with fiberglass (see :. ). Tests were

conducted to verify the extent of the reflection back to the reference plane where the orifice

was installed. Using a broadband noise as input, an absorption coefficient of 0.96 was

achieved at 1000 Hz. Absorption coefficients of 0.99 were achieved above 1000 Hz with the

anechoic termination in place.

2.4 Hot-Wire Measurements

Two sets of hot-wire measurements were made. A traverse of the flow-field perpendicular to

the axis of the impedance tube upstream of the orifice characterized the approaching mean

flow profile. The hot-wire probe was placed in one of the microphone ports and traversed

across the tube. Measurements of the velocity in the center of the orifice were also made. A

special port was installed downstream of the orifice that allowed the hot-wire probe to enter

the tube to be placed in the orifice's center. !i!:;_::,: _ shows how the hot-wire probe was

arranged in the impedance tube for velocity measurements.

3.0 Data Acquisition and Reduction

Acoustic impedance was determined using acoustic measurements from two microphones

that were flush mounted near the reference plane where the orifice was placed (see i :.,_ _:.i).

The cross spectral data from these signals were processed with an HP 3667A Signal Analyzer

and then used in the Chung and Blaser algorithm for the Two Microphone Method processed

on a Pentium II platform. A sinusoidal input from a function generator was supplied to the

JBL acoustic driver via a Carvin Amplifier. Acoustic impedance was obtained with and

without bias flow present. All acoustic data was obtained with no hot-wire present in the

impedance tube. The amplitude of the discrete tone was fixed at constant sound pressure

level obtained from the flush-mounted microphone closest to the orifice (microphone number

2 in Figure 1). These levels were nominally 130 dB and 150 dB. It took several iterations

before finding the correct driver voltage that produced the desired sound pressure level, but

once found, the voltage was matched for all subsequent runs to produce a given amplitude of

sound. The incident amplitude was extracted from the measured impedance via the method

outlined in Chung and Blaser 2 .

The bias flow was controlled by adjusting the air amplifier supply pressure. In order to set

the bias flow magnitude to the values prescribed in Table 1, a series of hot-wire
measurements were made with no acoustic excitation. The volume flow rate was determined



from pressure measurements made on the venturi using standard compressible flow theory.

Real time data was acquired with a LabView program that converted the pressure

measurements into a volume flow rate. With the hot-wire placed in the center of the orifce,

the bias flow rate was adjusted until a relationship between flow rate and orifice velocity

could be determined. Thus, a given orifice Mach number corresponded to a specific mass

flow rate that could be set with the air amplifier. The Mach number was referenced to the

ambient temperature outside of the impedance tube. i:i!:i__: -_ shows the relationship between

volume flow rate and orifice velocity. For comparison, the calculated orifice velocity from

continuity is shown as well. There is good agreement between the hot-wire and the

calculated values, with differences attributed to the unknown orifice discharge coefficient

and mass flow measurement accuracy.

4.0 Mean Flow Characterization Upstream of Orifice

Before acoustic impedance measurements were made, the flow approaching the orifice was

traversed to quantify the mean velocity profile. The hot-wire was traversed until it almost
touched the opposite wall from its entrance point. However, in order to maintain a proper seal,
the hot-wire could not be placed near the entrance wall. In spite of this, almost 85% of the tube
diameter was traversed with the probe. For the bias flow orifice Mach numbers indicated in

Table I, mean flow profiles were obtained for boundary condition information for future
numerical studies, i i_._. :_:: shows these velocity profiles approximately 2 inches upstream of
the orifice.

5.0 Results

5.1 Absorption Coefficient
The absorption coefficient was calculated from the measured reflection coefficient using the

relationship:

and plotted as a function of orifice bias flow Mach number. The results are shown in i i_,_ ,._,
noting that a smooth curve was fit through the data points. Also note that data for 130 dB and
145 dB at 5000 Hz could not be obtained due to irregularity in the acoustic driver, ii:.!_,"._ _._:_
_-,i show data for 110 dB, 120 dB, 130 dB, and 145 dB, respectively.

One feature of the data is that, for the frequencies tested, there appears to be a relative minima
and maxima for a given frequency as the bias flow is increased. At 1000 Hz, the maximum

absorption occurs at M = 0.05 (- 17 m/s) and at 2000 Hz it occurs at M = 0.1 (~ 34 m/s) with the
caveat that at 145 dB at these two frequencies, increasing bias flow diminishes the absorption.

As frequency is increased, the bias flow Mach number at which maximum absorption occurs
increases.

Another feature of the absorption data is that it appears to be relatively independent of amplitude
of the incident wave. This can be more clearly seen by examining the nonlinearity of the orifice

with no bias flow present, t i.(_c i' shows the normalized resistance and reactance of the orifice
as a function of the rms velocity in the center of the orifice. These velocities correspond to
incident sound pressure levels listed in Table I. (Data for 5000 Hz is not shown because the 130



dB & 145 dB cases were not obtained.) The impedance is relatively independent of the
amplitudes tested when the orifice velocities were below 10 m/s. Only 1000 Hz and 2000 Hz
exhibit nonlinearity when the incident amplitude was 145 dB. This is consistent with the
absorption data shown in i:_::_,_:: _;, and is even more evident in i:i:,_:_,,, :";_ '_, " _,:.. _l_:_..:_i that show
the absorption coefficient as a function of incident level for each frequency, respectively.

The absorption of sound by the orifice with a bias flow jet has been treated analytically by
Howe 5 in the form of a bias flow through a rigid perforated screen with no backing cavity.

Howe showed that for a given level of bias flow, the absorption coefficient maximizes as the
Strouhal number [St = oxto/Uc] tends towards zero. He found that for normal incidence, the
maximum absorption occurs when

m o

where _j is the perforate porosity and Mo is the bias flow Mach number. Furthermore, when this

ratio is unity, the maximum absorption coefficient that can be achieved is shown to be 0.5 for a
perforated screen with bias flow. For values (y/M o greater than or less than unity, the maximum
absorption is less than the value at (y/ Mo =1. At a given _/ Mo, the absorption coefficient
decreases rapidly as the Strouhal approaches unity. Howe explains this behavior as follows_:
When the vorticity length scale [-UJ¢o] is small, velocities induced by successive vortex rings
mostly cancel, except in the vicinity of the orifices. At low Strouhal numbers, the vorticity of
one sign can stretch many orifice diameters downstream and produces a strong effect on the
flow. Thus, Howe concludes that vorticity production at very high frequencies has a negligible
influence on the fluctuating flow.

In the present experiments, a single orifice rather than a perforate is used and the highest ratio of
porosity to bias flow Mach number is 0.6 [ cy = 0.03; Mo = 0.05]. However, the trends that
Howe predict are evident in the present data as shown in ii :,_, ::_ ,k; _i'_....... _" which show the
absorption coefficient as a function of Strouhal number and _/Mo. Note, as _/Mo. tends toward

unity, the absorption levels increase. Also, the rapid decrease in absorption coefficient as the
Strouhal number approaches one is evident. It should be noted that not enough data were
obtained at the low Strouhal number region at the lowest bias flow Mach number tested and at

the high bias flow Mach number not enough data were obtained in the higher Strouhal number
region to "flesh out" the trend. However, the trend exhibited by the _/ Mo. = 0.3 curves in

i ii_,>_ _ zi_._!_i_ ':_i, are indicative of Howe's prediction. It is also evident that absorption
coefficients above 0.5 were measured, which are greater than predicted.

We hope that these data will serve a useful purpose in validating other's theoretical models.

5.2 Normal Incidence Impedance
Together, (i,.::_x_:_ i_ :_(i i i show the normalized impedance of the single orifice under the
influence of a steady bias flow by displaying normalized resistance and reactance, respectively,
as a function of bias flow Mach number. These data were used to compute the reflection
coefficient and thus the absorption coefficient data. Note that the resistance, in general,
increases with increasing bias flow Mach number. As the frequency increases, the bias flow
Mach number at which the minimum reactance occurs increases. This is consistent with the

trend in the absorption coefficient data (see i i_:__,: (',). Recall that the as the frequency increased,
the value of bias flow Mach number at which maximum absorption occurred increased. The
absorption coefficient is large when the normalized impedance of the orifice plate is closest to
matching the impedance of air (pc).

4



6.0 Concluding Comments

Note that the purpose of acquiring the data presented here was to provide it to High Technology

Corporation researchers for validating numerical models being developed by them. The data has
been provided to them and the NASA Langley Technical monitor for use by others.
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Figure I. Experimental set-up for impedance measurements of single orifice under bias flow conditions.



Figure 2. Flow pattern for single orifice impedance tube measurements.
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Appendix A

Tabulated Orifice Velocities and Impedance Tube Velocity Profiles
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Measured Orifice Mean Velocities and Volume Flow Rates

Mo Vol. Flow Uo

[CFM] [ft/s]

0.050000 0.56000 56.50

0.i0000 1.2200 113.00

0.15000 2.0000 169.50

0.20000 3.0500 226.00

Mean Velocity Profiles Measured 2.08 inches Upstream of Orifice
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Appendix B

Tabulated Orifice Acoustic Absorption Coefficient and Impedance
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Frequency : i000 Hz

SPLi = ii0 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.30690 0.61130 2.3173

0.050000 0.70960 2.7742 1.1807

0.i0000 0.47960 5.2109 2.2112

0.15000 0.35670 7.8988 3.0649

0.20000 0.25660 9.9403 5.9379

SPLi = 120 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.31470 0.63250 2.3185

0.050000 0.71420 2.5965 1.2674

0.i0000 0.48450 5.0068 2.2914

0.15000 0.35820 7.6050 3.2987

0.20000 0.25700 9.4707 6.1472

SPLi = 130 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.36520 0.78610 2.3283

0.050000 0.74890 2.3438 1.1563

0.i0000 0.48470 5.0434 2.2587

0.15000 0.35920 7.6592 3.2121

0.20000 0.25550 9.7489 6.0887

SPLi = 145 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.64760 2.5199 1.7819

0.050000 0.59600 2.9108 2.0598

0.I0000 0.50570 4.2526 2.4590

0.15000 0.37380 7.1671 3.1609

0.20000 0.25200 9.5545 6.3438
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Frequency = 2000 Hz

SPLi = ii0 dB
Absorption

Mo Coefficient R/pc X/pc
0.0000 0.18020 0.85770 3.9480
0.050000 0.50170 1.9478 2.6151
0.i0000 0.48420 4.2263 2.7569
0.15000 0.38090 6.3074 3.5820
0.20000 0.27900 8.3434 5.6868

SPLi : 120 dB
Absorption

Mo Coefficient R/pc X/pc
0.0000 0.19270 0.94150 3.9712
0.050000 0.41380 1.4906 2.8648
0.i0000 0.48690 4.0488 2.7878
0.15000 0.38100 6.2969 3.5873
0.20000 0.27890 8.3258 5.6938

SPLi = 130 dB
Absorption

Mo Coefficient R/pc
0.0000 0.26680 1.3823
0.050000 0.37340 1.7183
0.i0000 0.50810 3.5790
0.15000 0.39300 6.0735
0.20000 0.27920 8.2706

X/Pc
3.8789
3.3193
2.6845
3.4337
5.7054

SPLi = 145 dB
Absorption

Mo Coefficient R/@c X/pc
0.0000 0.48520 3.3292 2.9502
0.050000 0.45010 3.7061 3.2844
0.i0000 0.40640 3.8957 3.7917
0.15000 0.38550 5.1697 3.9472
0.20000 0.28790 7.7858 5.5677
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Frequency = 3000 Hz

SPLi : ii0 dB

Absorption

Mo Coefficient R/pc X/pc

0.0000 0.089900 0.64850 5.1114

0.050000 0.17010 0.88270 4.1486

0.i0000 0.42160 3.2371 3.5722

0.15000 0.35680 5.1122 4.4672

0.20000 0.26180 6.9628 6.5569

SPLi = 120 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.093300 0.68280 5.1424

0.050000 0.13110 0.75630 4.4710

0.i0000 0.41720 3.2297 3.6155

0.15000 0.35840 5.1358 4.4356

0.20000 0.26260 7.0191 6.5262

SPLi = 130 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.095200 0.70110 5.1542

0.050000 0.12490 0.80390 4.7418

0.i0000 0.40090 3.0313 3.7404

0.15000 0.35560 5.1272 4.4869

0.20000 0.26300 7.0392 6.5143

SPLi = 145 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.12850 0.99270 5.1888

0.050000 0.15230 1.1520 5.0616

0.i0000 0.34480 2.1028 3.8425

0.15000 0.37320 4.7744 4.2224

0.20000 0.26830 6.9621 6.3570
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Frequency = 4000 Hz

SPLi = ii0 dB

Absorption

Mo Coefficient R/pc X/pc

0.0000 0.051900 0.44660 5.6882

0.050000 0.010300 0.087500 5.7257

0.i0000 0.26280 1.5568 4.1425

0.15000 0.31980 3.2717 4.7614

0.20000 0.24380 4.6012 6.6423

SPLi = 1120 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.052000 0.44070 5.6420

0.050000 0.028600 0.22730 5.4983

0.i0000 0.25710 1.7137 4.3932

0.15000 0.31930 3.2655 4.7655

0.20000 0.24390 4.5422 6.6172

SPLi = 130 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.053500 0.45670 5.6597

0.050000 0.047900 0.39840 5.5975

0.i0000 0.22810 1.5265 4.5156

0.15000 0.31170 3.2160 4.8468

0.20000 0.24420 4.5843 6.6255

SPLi = 145 dB

Absorption

Mo Coefficient R/@c Z/pc

0.0000 0.086400 0.76880 5.6962

0.050000 0.086400 0.77930 5.7362

0.i0000 0.13220 0.93950 4.9674

0.15000 0.31420 2.5874 4.4800

0.20000 0.25620 4.6384 6.3733
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Frequency = 5000 Hz

SPLi = ii0 dB

Absorption

Mo Coefficient R/pc X/pc

0.0000 0.069500 0.48800 5.0860

0.050000 0.076900 0.60140 5.3605

0.i0000 0.11380 0.68130 4.5953

0.15000 0.24420 1.7195 4.5568

0.20000 0.26630 2.6973 5.1809

SPLi = 120 dB

Absorption

Mo Coefficient R/pc X/p

0.0000 0.048800 0.33640 5.0766

0.050000

0.i0000 0.055000 0.35970 4.9322

0.15000 0.13040 0.92590 4.9694

0.20000 0.27100 2.6031 5.0436
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Frequency = 6000 Hz

SPLi : ii0 dB

Absorption

Mo Coefficient R/pc H/pc

0.0000 0.10790 0.63530 4.5687

0.050000 0.12900 0.96520 5.1052

0.i0000 0.093700 0.45890 4.1792

0.15000 0.25270 1.4440 4.1089

0.20000 0.31420 2.0548 4.1026

SPLi = 120 dB

Absorption

Mo Coefficient R/pc H/pc

0.0000 0.10820 0.63720 4.5690

0.050000 0.12430 0.93930 5.1445

0.i0000 0.13340 0.64770 4.0877

0.15000 0.25960 1.4800 4.0811

0.20000 0.31440 2.0797 4.1197

SPLi = 130 dB

Absorption

Mo Coefficient R/pc H/pc

0.0000 0.10770 0.62560 4.5388

0.050000 0.13220 0.97270 5.0527

0.i0000 0.14480 0.73510 4.1584

0.15000 0.25570 1.5387 4.1982

0.20000 0.31370 2.0530 4.1062

SPLi = 145 dB

Absorption

Mo Coefficient R/pc Z/pc

0.0000 0.097300 0.53900 4.4479

0.050000 0.11600 0.79540 4.9189

0.i0000 0.11060 0.60060 4.3775

0.15000 0.19540 1.1771 4.3990

0.20000 0.29690 1.8335 4.0831
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